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Agenda

0. Quick refresher
a. Large language models (LLMs)

b. Retrieval-augmented generation (RAG)

1. The Fellowship of the RAG

2. The Mines

3. The Road Goes Ever On



Large language models (LLM)

An LLM is:

A very sophisticated 
auto-completer trained on many, 

many text examples

Something that takes text input and 
returns text output

A compressed representation of 
human writing patterns

An LLM is not:

A knowledge base or API
(no access to real-time information*)

Comprehending what you asked or 
what it is writing; it only performs 

sophisticated pattern matching and 
statistical analysis

Reliable nor deterministic**
(ask twice and get two different answers)

* Although some LLMs respond with up to date information, they’re almost always doing this by calling tools that return information to them, and then they process that information as input (just like your original query).
** Under some conditions, LLMs will reply deterministically, but this does require configuration (random seed, other parameters) that might not always be set.



Robert McNees on Mastodon

https://mastodon.social/@mcnees/115172552726806174


Imagine hiring an intern
with an unknown set of biases,
that will never learn anything new,
was trained by people you never met
on a broad, unknown set of topics,
and then you put that intern in front of your most 
valuable users.

That’s an LLM.



How do you raise the odds of a 
quality response with your own 
information that changes over 
time?

Your LLM needs a tool! 🔧
RAG is one of those tools that can help.



What is RAG?

Retrieval Augmented Generation
Retrieving relevant 
information from an 
external source that 
helps the LLM answer 
a question better.

Enhance the LLM’s 
ability to answer the 
question accurately 
and completely with 
these new pieces of 
knowledge.

The LLM can now use 
its internal knowledge 
(from training) along 
with the new input 
from RAG to generate 
a better answer.



RAG flow

🙋 API

RAG system

LLM

A user sends a question 
to an API expecting a 

valid answer



RAG flow

🙋 API

RAG system

LLM

The API asks the RAG 
system for additional 

relevant context based 
on the user’s query



RAG flow

🙋 API

RAG system

LLM

The user’s query, the 
RAG context, and the 

prompt are sent to the 
LLM to generate a 

response



RAG flow

🙋 API

RAG system

LLM

The user receives a 
correct and complete 

response



RAG is much like an open-note exam at school

If you know the concepts and material that you’re 

tested on, but you forgot important names, dates, 

or formulas, you can quickly refer to your notes 
and continue with the exam.

However, if you don’t understand the concepts and 

you’re unfamiliar with the material, no notes are 
going to help you.

LLMs must understand the language and concepts 
for RAG to work. An LLM trained on English 

documents can’t read RAG content in Portuguese.
Photo credit: KC Shum on Unsplash

Thanks to Mo Duffy for this analogy! ❤
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Act I:
The Fellowship of the RAG



In a hole in the ground lived a documentation system…

“Let’s take all of the documents 

we have, toss them into a RAG 

system, and then have LLMs 

answer questions from our 

employees and customers!”



…but it turned out to be a difficult path.

That’s why you need a 

fellowship (and a plan).



The senior engineer

“Is it secret? Is it safe?”

● Do some of the documents contain sensitive 
information or data that has compliance 
requirements?

● How do you prevent someone from getting access to 
data that they shouldn’t be able to access?

● Can you ensure that data in the RAG system was not 
tampered with by anyone, internal or external?



Overwhelmed junior developers

Where are the 
documents stored?

Are the documents 
accurate?

Is the content up to 
date?

Are the documents 
written for the 
same audience?

How often do 
these documents 
change?

In which formats 
are documents 
stored?

“I don't know half of you half as well as I should 
like; and I like less than half of you half as well 

as you deserve.”



Quality engineer

"I'm going to see it through to the end!"

● AI systems aren’t deterministic, so a new 

approach is required

● Need to follow development closely to track 

results from changing LLMs, fine tuning, RAG 

content, embedding models, prompts, random 

seeds, maximum token lengths, AI frameworks… 

"There's some good in this world, Mr. Frodo, and it's worth testing for!"



The AI enthusiast

“We needs it to be perfect, precious. We saw 20 
useful, very useful, posts on HackerNews this week. 
Yes, we did! You will read them all!”

● LLM capabilities change constantly

● RAG content changes constantly

● Customer questions change constantly

● AI system strategies change constantly

● HackerNews changes constantly



The perfect 
solution is the 
enemy of progress



Act II:
The Mines



Start with a user story

Build a story with this simple format:

● As a (role of a person using your RAG system)
● I want to (something they can do)
● So I can (benefit they get)

Make it achievable, measurable, and meaningful. 

This becomes your project’s north star.

Internal: As a customer support engineer, I want 

to search internal knowledge about known issues 

with specific hardware configurations so I can help 

customers faster.

External: As a sysadmin, I want to search for 

troubleshooting steps when my system shows 

specific error messages so I can resolve issues 

without opening support tickets.



Align the stakeholders

Who are the end users?

What information is the most useful for 
a first release?

How do we know when the first release 
is good enough to ship?

When does it need to be ready?

What is the budget for infrastructure?

How will be measure our success?

Sr. Dev

QE

DBA
Product 

Manager

Jr. Dev Jr. Dev Intern

Docs 
Owner

Proj. Mgr



The first stumbles

Documents are easy for humans but difficult for 
computers. Parse your documents consistently for 
every format. Docling is helpful here.

Choose an initial method for searching your 
documents (more on the next slide) while leaving the 
door open for other methods in the future.

Score your results using an objective method, such as 
LLM-as-a-judge, to check the search result quality as 
you develop.

Keep your changes small and do team demos 
frequently.

https://github.com/docling-project/docling
https://en.wikipedia.org/wiki/LLM-as-a-Judge


“So bright, so beautiful, a new HackerNews article.”

Stay on the path!



RAG search strategies

Keyword
(lexical)

Vector
(semantic)

Hybrid

Graph
(relationship)

Very fast traditional text search 
looking for phrases/keywords

Uses vectors to find similarities 
with more context and meaning

Uses knowledge graphs or doc 
relationships to find results

Combines multiple strategies; 
usually keyword + vector

Doesn’t look at meaning/semantics; would 
miss truck/lorry or car/automobile

Requires embedding text first into special 
databases; less precise matching

Must build these relationships and graphs 
first if they do not exist in your documents

Still requires expensive embedding and also 
usually requires a re-ranking mechanism



Splitting and chunking for vector search

Embedding models have a maximum context length, 
so split and chunk your lengthy documents:

● Split: Break documents up via chapters, 
subchapters, sections, topics, or other 
boundaries that a human would recognize

● Chunk: Break up splits into smaller pieces 
that fit in your embedding model’s context 
window

Scoring and judging is critical here!
You can check the score and then adjust chunk sizes, 
chunk overlaps, and embedding models. Then, check 
the score again.



“Put the PDFs in the bucket, we says. RAG, the 
precious, is easy.”

Stay on the path!



Some documents will not bend to your will

10,000 page PDF full of Excel 
tables, line charts, and images 
with multi-column text structure 
written 15 years ago by an expert 
who know longer works there

You



YOU SHALL NOT PARSE!



Keep the end goal in sight for tough documents

Find owners for the document who can revise it, 

update it, or otherwise make it easier to parse.

Put the document into a list of documents to 

address once you’re further along.

Docling* offers some powerful OCR and image 

extraction tools that can extract really tough 

PDFs.

Keep in mind that some content should likely stay 

buried where you found it.

Budget more time for processing documents than 

anything else. Garbage in, garbage out.

Consider methods for pre-extracting content 

from markup (XML, JSON, etc) into a friendlier 

text format, and then ingest the document.

* There’s a great research paper from the docling team about parsing the most difficult documents.

https://arxiv.org/pdf/2501.17887


Consider common failure scenarios
Incorrect 
response

Correct & 
incomplete

LLM
Hallucination

Correct & 
irrelevant

The RAG search simply returned the wrong 
information. Try searching for strings you know are 
in your documents and ensure you’re using the 
same embedding model for search as you are when 
creating vectors.

A recipe for beef wellington was returned, but 
only steps 4-8 of 20. Consider expanding RAG 
context to logical (human recognizable) boundaries, 
especially when dealing with lists.

RAG searching was fine, but the LLM does not 
know enough about the topic to use the 
information that you provided. Re-evaluate your 
selection of LLM (biggest impact) or provide more 
context via RAG (lowest impact).

“How do I reset my password” returns best 
practices for making a new password instead of 
the steps to reset it. Classify intent or use LLMs to 
rewrite the query before doing the RAG search.



Hallucinations

LLMs hallucinate when they generate information 

for topics that are not in their training data

If your RAG results are accurate and complete, 

but the LLM response remains incorrect, your 

model might need more fine tuning (expensive) on 

your data

It may be easier to switch to another LLM which 

was trained on material more relevant to your 

documentation



Model size matters

Smaller models are trained on less data (fewer 

parameters) and they often need more context 

from RAG

Larger models (Llama 4 Scout/Maverick) or 

frontier models (Claude Opus, GPT-4o) do not 

require as much context as their training is 

extensive and tool usage capability is stronger

You can get away with lower accuracy RAG with 

the larger models, but not with the smaller ones



Act III.
The Road Ever Goes On



Develop a RAG pipeline for improving context

Add new or 
update existing 

documents
Ingest

Score + Judge

Add to 
production 

RAG

Identify RAG 
knowledge 

gaps

Refine docs or 
adjust 

ingestion

Good enough

Not good 
enough

Reject and 
ask for help

Still
terrible



Arriving at “done enough”

RAG is a continuous journey, but eventually you’re ready 

for launch.

Remember that accuracy will always fluctuate and edge 

cases will always appear, but look for broad topics which 

are missing from the RAG database that should be added.

Identify troublesome topics where documentation or RAG 

ingestion should be modified.



First production deployment

"But late in the night the watchmen cried out, and all awoke. The moon was gone. Stars 
were shining above; but over the ground there crept a darkness blacker than the night. 
On both sides of the river it rolled towards them, going northward."

The Two Towers by J.R.R. Tolkien

Optimize your RAG database configuration for high concurrency 

and identify data to be indexed for fast querying.

Add logging of queries received and the responses provided from 

the RAG system along with any similarity scores so you can track 

down anomalies or poor results.

Find internal testers who are willing to provide feedback on the 

answers they receive.

Build a method for testers and team members to log bugs about 

problems with RAG responses in an organized way.



RAG lessons from building RHEL Lightspeed

RAG is not the destination, but an ongoing quest

Your fellowship matters more than your 

technology stack

"I will take the Ring, though I do not know the way." - Frodo



RAG lessons from building RHEL Lightspeed

Start small, fail fast, and learn constantly

Measure everything and optimize what matters

"I will take the Ring, though I do not know the way." - Frodo



RAG lessons from building RHEL Lightspeed

Documentation quality matters 
much more than RAG strategy

Garbage in,
Garbage out

"I will take the Ring, though I do not know the way." - Frodo



Thank you!
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