
Don’t tell me
RAG is easy
Major Hayden | major@mhtx.net | DevConf.US 2025

Photo credit: Venti Views on Unsplash

https://unsplash.com/photos/city-buildings-during-night-time-nUV0tf_cquk

Agenda

0. Quick refresher
a. Large language models (LLMs)

b. Retrieval-augmented generation (RAG)

1. The Fellowship of the RAG

2. The Mines

3. The Road Goes Ever On

Large language models (LLM)

An LLM is:

A very sophisticated
auto-completer trained on many,

many text examples

Something that takes text input and
returns text output

A compressed representation of
human writing patterns

An LLM is not:

A knowledge base or API
(no access to real-time information*)

Comprehending what you asked or
what it is writing; it only performs

sophisticated pattern matching and
statistical analysis

Reliable nor deterministic**
(ask twice and get two different answers)

* Although some LLMs respond with up to date information, they’re almost always doing this by calling tools that return information to them, and then they process that information as input (just like your original query).
** Under some conditions, LLMs will reply deterministically, but this does require configuration (random seed, other parameters) that might not always be set.

Robert McNees on Mastodon

https://mastodon.social/@mcnees/115172552726806174

Imagine hiring an intern
with an unknown set of biases,
that will never learn anything new,
was trained by people you never met
on a broad, unknown set of topics,
and then you put that intern in front of your most
valuable users.

That’s an LLM.

How do you raise the odds of a
quality response with your own
information that changes over
time?

Your LLM needs a tool! 🔧
RAG is one of those tools that can help.

What is RAG?

Retrieval Augmented Generation
Retrieving relevant
information from an
external source that
helps the LLM answer
a question better.

Enhance the LLM’s
ability to answer the
question accurately
and completely with
these new pieces of
knowledge.

The LLM can now use
its internal knowledge
(from training) along
with the new input
from RAG to generate
a better answer.

RAG flow

🙋 API

RAG system

LLM

A user sends a question
to an API expecting a

valid answer

RAG flow

🙋 API

RAG system

LLM

The API asks the RAG
system for additional

relevant context based
on the user’s query

RAG flow

🙋 API

RAG system

LLM

The user’s query, the
RAG context, and the

prompt are sent to the
LLM to generate a

response

RAG flow

🙋 API

RAG system

LLM

The user receives a
correct and complete

response

RAG is much like an open-note exam at school

If you know the concepts and material that you’re

tested on, but you forgot important names, dates,

or formulas, you can quickly refer to your notes
and continue with the exam.

However, if you don’t understand the concepts and

you’re unfamiliar with the material, no notes are
going to help you.

LLMs must understand the language and concepts
for RAG to work. An LLM trained on English

documents can’t read RAG content in Portuguese.
Photo credit: KC Shum on Unsplash

Thanks to Mo Duffy for this analogy! ❤

https://unsplash.com/photos/a-fountain-pen-rests-atop-handwritten-journal-entries-OpWkMd02u9k

Act I:
The Fellowship of the RAG

In a hole in the ground lived a documentation system…

“Let’s take all of the documents

we have, toss them into a RAG

system, and then have LLMs

answer questions from our

employees and customers!”

…but it turned out to be a difficult path.

That’s why you need a

fellowship (and a plan).

The senior engineer

“Is it secret? Is it safe?”

● Do some of the documents contain sensitive
information or data that has compliance
requirements?

● How do you prevent someone from getting access to
data that they shouldn’t be able to access?

● Can you ensure that data in the RAG system was not
tampered with by anyone, internal or external?

Overwhelmed junior developers

Where are the
documents stored?

Are the documents
accurate?

Is the content up to
date?

Are the documents
written for the
same audience?

How often do
these documents
change?

In which formats
are documents
stored?

“I don't know half of you half as well as I should
like; and I like less than half of you half as well

as you deserve.”

Quality engineer

"I'm going to see it through to the end!"

● AI systems aren’t deterministic, so a new

approach is required

● Need to follow development closely to track

results from changing LLMs, fine tuning, RAG

content, embedding models, prompts, random

seeds, maximum token lengths, AI frameworks…

"There's some good in this world, Mr. Frodo, and it's worth testing for!"

The AI enthusiast

“We needs it to be perfect, precious. We saw 20
useful, very useful, posts on HackerNews this week.
Yes, we did! You will read them all!”

● LLM capabilities change constantly

● RAG content changes constantly

● Customer questions change constantly

● AI system strategies change constantly

● HackerNews changes constantly

The perfect
solution is the
enemy of progress

Act II:
The Mines

Start with a user story

Build a story with this simple format:

● As a (role of a person using your RAG system)
● I want to (something they can do)
● So I can (benefit they get)

Make it achievable, measurable, and meaningful.

This becomes your project’s north star.

Internal: As a customer support engineer, I want

to search internal knowledge about known issues

with specific hardware configurations so I can help

customers faster.

External: As a sysadmin, I want to search for

troubleshooting steps when my system shows

specific error messages so I can resolve issues

without opening support tickets.

Align the stakeholders

Who are the end users?

What information is the most useful for
a first release?

How do we know when the first release
is good enough to ship?

When does it need to be ready?

What is the budget for infrastructure?

How will be measure our success?

Sr. Dev

QE

DBA
Product

Manager

Jr. Dev Jr. Dev Intern

Docs
Owner

Proj. Mgr

The first stumbles

Documents are easy for humans but difficult for
computers. Parse your documents consistently for
every format. Docling is helpful here.

Choose an initial method for searching your
documents (more on the next slide) while leaving the
door open for other methods in the future.

Score your results using an objective method, such as
LLM-as-a-judge, to check the search result quality as
you develop.

Keep your changes small and do team demos
frequently.

https://github.com/docling-project/docling
https://en.wikipedia.org/wiki/LLM-as-a-Judge

“So bright, so beautiful, a new HackerNews article.”

Stay on the path!

RAG search strategies

Keyword
(lexical)

Vector
(semantic)

Hybrid

Graph
(relationship)

Very fast traditional text search
looking for phrases/keywords

Uses vectors to find similarities
with more context and meaning

Uses knowledge graphs or doc
relationships to find results

Combines multiple strategies;
usually keyword + vector

Doesn’t look at meaning/semantics; would
miss truck/lorry or car/automobile

Requires embedding text first into special
databases; less precise matching

Must build these relationships and graphs
first if they do not exist in your documents

Still requires expensive embedding and also
usually requires a re-ranking mechanism

Splitting and chunking for vector search

Embedding models have a maximum context length,
so split and chunk your lengthy documents:

● Split: Break documents up via chapters,
subchapters, sections, topics, or other
boundaries that a human would recognize

● Chunk: Break up splits into smaller pieces
that fit in your embedding model’s context
window

Scoring and judging is critical here!
You can check the score and then adjust chunk sizes,
chunk overlaps, and embedding models. Then, check
the score again.

“Put the PDFs in the bucket, we says. RAG, the
precious, is easy.”

Stay on the path!

Some documents will not bend to your will

10,000 page PDF full of Excel
tables, line charts, and images
with multi-column text structure
written 15 years ago by an expert
who know longer works there

You

YOU SHALL NOT PARSE!

Keep the end goal in sight for tough documents

Find owners for the document who can revise it,

update it, or otherwise make it easier to parse.

Put the document into a list of documents to

address once you’re further along.

Docling* offers some powerful OCR and image

extraction tools that can extract really tough

PDFs.

Keep in mind that some content should likely stay

buried where you found it.

Budget more time for processing documents than

anything else. Garbage in, garbage out.

Consider methods for pre-extracting content

from markup (XML, JSON, etc) into a friendlier

text format, and then ingest the document.

* There’s a great research paper from the docling team about parsing the most difficult documents.

https://arxiv.org/pdf/2501.17887

Consider common failure scenarios
Incorrect
response

Correct &
incomplete

LLM
Hallucination

Correct &
irrelevant

The RAG search simply returned the wrong
information. Try searching for strings you know are
in your documents and ensure you’re using the
same embedding model for search as you are when
creating vectors.

A recipe for beef wellington was returned, but
only steps 4-8 of 20. Consider expanding RAG
context to logical (human recognizable) boundaries,
especially when dealing with lists.

RAG searching was fine, but the LLM does not
know enough about the topic to use the
information that you provided. Re-evaluate your
selection of LLM (biggest impact) or provide more
context via RAG (lowest impact).

“How do I reset my password” returns best
practices for making a new password instead of
the steps to reset it. Classify intent or use LLMs to
rewrite the query before doing the RAG search.

Hallucinations

LLMs hallucinate when they generate information

for topics that are not in their training data

If your RAG results are accurate and complete,

but the LLM response remains incorrect, your

model might need more fine tuning (expensive) on

your data

It may be easier to switch to another LLM which

was trained on material more relevant to your

documentation

Model size matters

Smaller models are trained on less data (fewer

parameters) and they often need more context

from RAG

Larger models (Llama 4 Scout/Maverick) or

frontier models (Claude Opus, GPT-4o) do not

require as much context as their training is

extensive and tool usage capability is stronger

You can get away with lower accuracy RAG with

the larger models, but not with the smaller ones

Act III.
The Road Ever Goes On

Develop a RAG pipeline for improving context

Add new or
update existing

documents
Ingest

Score + Judge

Add to
production

RAG

Identify RAG
knowledge

gaps

Refine docs or
adjust

ingestion

Good enough

Not good
enough

Reject and
ask for help

Still
terrible

Arriving at “done enough”

RAG is a continuous journey, but eventually you’re ready

for launch.

Remember that accuracy will always fluctuate and edge

cases will always appear, but look for broad topics which

are missing from the RAG database that should be added.

Identify troublesome topics where documentation or RAG

ingestion should be modified.

First production deployment

"But late in the night the watchmen cried out, and all awoke. The moon was gone. Stars
were shining above; but over the ground there crept a darkness blacker than the night.
On both sides of the river it rolled towards them, going northward."

The Two Towers by J.R.R. Tolkien

Optimize your RAG database configuration for high concurrency

and identify data to be indexed for fast querying.

Add logging of queries received and the responses provided from

the RAG system along with any similarity scores so you can track

down anomalies or poor results.

Find internal testers who are willing to provide feedback on the

answers they receive.

Build a method for testers and team members to log bugs about

problems with RAG responses in an organized way.

RAG lessons from building RHEL Lightspeed

RAG is not the destination, but an ongoing quest

Your fellowship matters more than your

technology stack

"I will take the Ring, though I do not know the way." - Frodo

RAG lessons from building RHEL Lightspeed

Start small, fail fast, and learn constantly

Measure everything and optimize what matters

"I will take the Ring, though I do not know the way." - Frodo

RAG lessons from building RHEL Lightspeed

Documentation quality matters
much more than RAG strategy

Garbage in,
Garbage out

"I will take the Ring, though I do not know the way." - Frodo

Thank you!

Major Hayden | major@mhtx.net | DevConf.US 2025

Photo credit: Venti Views on Unsplash

https://unsplash.com/photos/city-buildings-during-night-time-nUV0tf_cquk

